Dual mean Minkowski measures of symmetry for convex bodies
نویسنده
چکیده
We introduce and study a sequence of geometric invariants for convex bodies in finite-dimensional spaces, which is in a sense dual to the sequence of mean Minkowski measures of symmetry proposed by the second author. It turns out that the sequence introduced in this paper shares many nice properties with the sequence of mean Minkowski measures, such as the sub-arithmeticity and the upper-additivity. More meaningfully, it is shown that this new sequence of geometric invariants, in contrast to the sequence of mean Minkowski measures which provides information on the shapes of lower dimensional sections of a convex body, provides information on the shapes of orthogonal projections of a convex body. The relations of these new invariants to the well-known Minkowski measure of asymmetry and their further applications are discussed as well.
منابع مشابه
Dual Mean Minkowski Measures and the Grünbaum Conjecture for Affine Diameters
For a convex body C in a Euclidean vector space X of dimension n (≥ 2), we define two sub-arithmetic monotonic sequences {σC,k}k≥1 and {σo C,k}k≥1 of functions on the interior of C. The k-th members are “mean Minkowski measures in dimension k” which are pointwise dual: σo C,k(O) = σCO,k(O), where O ∈ int C, and CO is the dual (polar) of C with respect to O. They are measures of (anti-)symmetry ...
متن کاملTranslative and Kinematic Integral Formulae concerning the Convex Hull Operation Translative and Kinematic Integral Formulae
For convex bodies K; K 0 and a translation in n-dimensional Euclidean space, let K _ K 0 be the convex hull of the union of K and K 0. Let F be a geometric functional on the space of all convex bodies. We consider special families (r) r>0 of measures on the translation group T n such that the limit lim r!1 Z Tn F (K _ K 0) dd r () exists and can be expressed in terms of K and K 0. The functiona...
متن کاملStar Valuations and Dual Mixed Volumes
Since its creation by Brunn and Minkowski, what has become known as the Brunn Minkowski theory has provided powerful machinery to solve a broad variety of inverse problems with stereological data. The machinery of the Brunn Minkowski theory includes mixed volumes (of Minkowski), symmetrization techniques (such as those of Steiner and Blaschke), isoperimetric inequalities (such as the Brunn Mink...
متن کاملVolume Inequalities and Additive Maps of Convex Bodies
Analogs of the classical inequalities from the Brunn Minkowski Theory for rotation intertwining additive maps of convex bodies are developed. We also prove analogs of inequalities from the dual Brunn Minkowski Theory for intertwining additive maps of star bodies. These inequalities provide generalizations of results for projection and intersection bodies. As a corollary we obtain a new Brunn Mi...
متن کامل